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Abstract

Solid geometry problem solving demands spatial mathemat-
ical reasoning that integrates spatial intelligence and sym-
bolic reasoning. However, most existing multimodal mathe-
matical reasoning benchmarks focus primarily on 2D plane
geometry, rely on static datasets prone to data contamina-
tion and memorization, and evaluate models solely by fi-
nal answers, overlooking the reasoning process. To address
these limitations, we introduce DynaSolidGeo, the first dy-
namic benchmark for evaluating genuine spatial reasoning
in Vision-Language Models (VLMs). Constructed through
a semi-automatic annotation pipeline, DynaSolidGeo con-
tains 503 expert-curated seed questions that can, in prin-
ciple, dynamically generate an unbounded number of di-
verse multimodal text-visual instances. Beyond answer ac-
curacy, we incorporate process evaluation based on expert-
annotated reasoning chains to measure logical validity and
causal coherence. Experiments across representative open-
source and closed-source VLMs reveal large performance
gaps, severe degradation in dynamic settings, and poor per-
formance on tasks requiring high-level spatial intelligence,
such as mental rotation and visualization. The code and
dataset are available at DynaSolidGeo.

1. Introduction
Geometry problem solving has long played a central role in
mathematical reasoning, requiring integrating visual under-
standing and symbolic reasoning across complex graphic
and textual contexts [38]. According to structural proper-
ties, geometry can be categorized into plane geometry and
solid geometry. Compared to plane geometry, solid ge-
ometry imposes substantially higher spatial mathematical
reasoning ability, as reasoning in three dimensions entails
spatial intelligence, including spatial perception, spatial re-
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lation, spatial orientation, spatial rotation, and spatial vi-
sualization that goes beyond two-dimensional recognition
[14, 16, 22, 29]. Such tasks remain difficult even for human
learners [7], and represent a formidable open challenge for
current AI systems.

In parallel, recent years have witnessed remarkable
progress in multimodal large language models (MLLMs).
Building on the successes of foundation models, vision-
language models (VLMs) [4–6, 11, 17, 23, 27] have rapidly
advanced the state of the art in a wide spectrum of mul-
timodal understanding tasks. Among these tasks, multi-
modal mathematical reasoning has emerged as a challeng-
ing yet vibrant frontier, with benchmarks such as GeoQA
[8], MathVista [25], and GeoSense [38] exposing both
the promise and the limitations of current VLMs. These
carefully designed benchmarks have played a pivotal role
in advancing the field, providing standardized evaluation
and catalyzing iterative improvements in model design and
training paradigm.

Despite this progress, current multimodal mathematical
reasoning benchmarks exhibit critical limitations. First, the
vast majority of existing geometry-related benchmarks fo-
cus on plane geometry or diagram-based word problems,
leaving solid geometry, which places heightened demands
for spatial intelligence, largely underexplored. For exam-
ple, PGPS9K [42] contains more than 9,000 plane geom-
etry questions but no solid geometry items, and in GeoE-
val [41], tasks involving solid geometry constitute merely
2% of the benchmark. Second, nearly all existing multi-
modal mathematical reasoning benchmarks are static, re-
lying on fixed and finite test sets that are susceptible to
data contamination and memorization. Recent analyses
demonstrate that large models can memorize and regurgi-
tate benchmark data [10, 12, 21, 26, 28], and some studies
show that decontaminated re-releases often lead to substan-
tial drops in performance [44], confirming that static eval-
uation may significantly overestimate true reasoning and
generalization [31]. Similar concerns have motivated dy-
namic evaluations in coding [18, 45] and general-purpose
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Benchmarks Language S.G. Size (Proportion) S.G. Category Level Static/Dynamic Modality Metric

GeoQA [8] EN&CN 0 (0.0%) - K. Static Text&Image A.E.
PGPS9K [42] EN 0 (0.0%) - K. Static Text&Image A.E.
MMMU-MATH [40] EN 0 (0.0%) - U. Static Text&Image A.E.
GeoEval [41] EN 100 (2.0%) - K. Static Text&Image A.E.
MATH-Vision [32] EN 263 (8.7%) - K.&U. Static Text&Image A.E.
OlympiadBench [15] EN&CN 784 (9.2%) - C. Static Text&Image A.E.
MathVerse [43] EN 119 (15.1%) - K. Static Text&Image A.E.
GeoSense [38] EN&CN 350 (20.0%) 2 K. Static Text&Image A.E.&P.E.
SolidGeo [33] EN&CN 3113 (100.0%) 8 K.&U.&C. Static Text&Image A.E.
GeoLaux [13] CN 0 (0.0%) - K. Static Text&Image A.E.&P.E.
DynaMath [47] EN&CN 15 seed questions (3.0%) - K.&U. Dynamic Text&Image A.E.

DynaSolidGeo (Ours) EN&CN 503 seed questions (100.0%) 8 K.&C. Dynamic Text&Image&Video A.E.&P.E.

Table 1. Comparison with existing geometry-related mathematical reasoning benchmarks. S.G.=Solid Geometry; Level: K.=K-12,
U.=University, C.=Competitions; Metric: P.E.=Process Evaluation, A.E.=Answer Evaluation.

QA [34, 35], indicating a community-wide shift towards
dynamic, contamination-resistant evaluation protocols [9].
Moreover, most existing multimodal mathematical reason-
ing benchmarks [25, 32, 33, 40–42, 47] evaluate models
solely based on answer accuracy, which allows models suf-
fering from data contamination or over-reliance on memo-
rization to appear strong, while failing to reveal their gen-
uine reasoning ability.

To address these limitations, we present DynaSolidGeo,
a new benchmark for the dynamic evaluation of VLMs’
genuine spatial mathematical reasoning in solid geome-
try. Unlike existing static resources, DynaSolidGeo con-
sists of 503 seed questions of solid geometry problem solv-
ing, each represented by a Python program paired with a
corresponding MATLAB program. With the correctness
of the question guaranteed, each seed question is param-
eterized: textual variables in the question statement (e.g.,
endpoint labels, side lengths, areas, volumes, ratio) as well
as rendering parameters of the solid geometry (e.g., cam-
era viewpoints) can all be randomized. By supplying dif-
ferent random seeds, DynaSolidGeo can in principle gen-
erate an unbounded number of question-answer instances,
where each instance can optionally include two visual ver-
sions: a randomized-view image and a 360-degree rota-
tion video. The seed questions of DynaSolidGeo are drawn
from diverse and authoritative sources, including China’s
Gaokao examinations, international mathematics competi-
tions, and widely used training materials for competition
preparation. Together, they cover nearly all major cate-
gories of high-school and competition-level solid geometry
problems (eight in total), including positional relations, an-
gle, length, area, and volume calculations, as well as count-
ing, dynamic, and folding tasks. Moreover, we move be-
yond answer-only evaluation by incorporating process-level
assessment grounded in expert-annotated reasoning chains.
Through Answer Accuracy (AA), Process Score (PS), and

Process-Qualified Accuracy (PA), we jointly measure an-
swer correctness, reasoning quality, and reasoning-qualified
accuracy, offering a more faithful reflection of VLMs’ gen-
uine spatial mathematical reasoning ability. To ensure reli-
ability, all solutions are expert-annotated by undergraduates
and graduate students from the School of Mathematical Sci-
ences, Peking University, including Chinese Mathematical
Olympiad (CMO) gold medalists. A comparative summary
with related benchmarks is provided in Table 1.

We evaluate a range of mainstream, latest closed- and
open-source VLMs on DynaSolidGeo. Experiments reveal
a clear gap between most open-source and closed-source
VLMs. Notably, nearly all models struggle with Count-
ing problems, highlighting the lack of higher-order spatial
intelligence, such as mental rotation and spatial visualiza-
tion. Compared to the static source-question dataset, mod-
els exhibit a significant performance drop on DynaSolid-
Geo (up to 20.4% for Claude-Sonnet-4.5), exposing poten-
tial data contamination and memorization effects. Further-
more, the additional metric degradation after introducing
process evaluation indicates that previous static, answer-
only benchmarks likely overestimated model capabilities,
whereas DynaSolidGeo provides a more faithful and com-
prehensive evaluation of genuine spatial mathematical rea-
soning ability. In summary, our contributions are as follows:
• We design a semi-automatic data annotation pipeline for

the seed question annotation of solid geometry problems,
which minimizes human involvement without compro-
mising annotation correctness or usability.

• We propose DynaSolidGeo, the first dynamic benchmark
for solid geometry problem solving, consisting of 503
carefully curated seed questions that can, in principle,
automatically generate an unbounded number of diverse
question instances across multiple geometry categories.

• We introduce a process evaluation using expert-annotated
reasoning chains that, together with answer evaluation,

2



provides a holistic measure of VLMs’ genuine spatial
mathematical reasoning capability.

• We evaluate a series of popular and SOTA VLMs on Dy-
naSolidGeo to gain deeper insights into their spatial math-
ematical reasoning abilities and conduct extensive analy-
ses, including revealing potential data contamination and
memorization phenomenon on static datasets.

2. Related Work

2.1. Multimodal Mathematical Reasoning Bench-
marks.

Recent years have witnessed the emergence of multimodal
benchmarks that evaluate mathematical reasoning in visu-
ally grounded settings. Early efforts include TQA [19] and
Geometry3K [24] introduced multimodal reasoning tasks
involving diagram-based science and geometry word prob-
lems with accompanying 2D visuals. More recent bench-
marks, such as GeoQA [8], PGPS9K [42], MMMU-MATH
[40], GeoEval [41], MATH-Vision [32], OlympiadBench
[15], MathVerse [43], GeoSense [38], and GeoLaux [13]
have broadened coverage to thousands of multimodal math
problems. However, the vast majority of these resources
concentrate on plane geometry and 2D diagrammatic rea-
soning, leaving solid geometry largely underexplored. A
few datasets have attempted to move toward 3D: Solid-
Geo [33] explicitly targets solid geometry but remains static
datasets vulnerable to contamination and memorization;
DynaMath [47] introduces dynamic instance generation, but
solid geometry is barely represented, with only 15 problems
(3%) in the dataset. In contrast, DynaSolidGeo fills this gap
with scalable and dynamic solid-geometry coverage.

2.2. Vision-Language Models.

Recent vision–language models (VLMs) such as BLIP-2
[20], Flamingo [3], and LLaVA [23] combine pretrained
large language models with visual encoders, enabling open-
ended multimodal reasoning and instruction following.
Building on this paradigm, the latest generation of VLMs
has rapidly advanced in scale, architecture, and reasoning
capability. The closed-source models include GPT-5 family
[27], Gemini-2.5 family [11], and Claude-Sonnet-4.5 [5],
which feature deeply integrated multimodal backbones and
enhanced reasoning modules. In parallel, the open-source
community has introduced competitive alternatives such as
LLaVA-OneVision-1.5 family [4], GLM-4.1V-9B-Thinking
[17], Llama-4-Maverick-17B-Instruct [2], InternVL3.5-8B
[37], DeepSeek-VL2 [36], and the Qwen3-VL family [30],
which push the frontier of visual capabilities. Yet their spa-
tial mathematical reasoning ability remains underexplored,
motivating our evaluation on DynaSolidGeo.

3. DynaSolidGeo
We propose DynaSolidGeo, a dynamic multimodal bench-
mark for spatial mathematical reasoning in solid geometry,
which consists of 503 expert-annotated seed questions that
can expand into unbounded question–answer instances with
randomized text, images, and 360-degree rotation videos,
by inputting a random seed.

3.1. Data Collection
The seed questions of DynaSolidGeo are drawn from di-
verse and authoritative sources to ensure both breadth and
rigor. Specifically, we collect 503 solid geometry ques-
tions (referred to as source questions) from three major
categories: 1) China’s Gaokao examinations from 2014
to 2025 (11 years), 2) international mathematics competi-
tions such as the American Invitational Mathematics Ex-
amination (AIME), the American Mathematics Competi-
tions (AMC), and the American High School Mathematics
Examination (AHSME), and 3) high-level preparation and
training materials, including competition handbooks and
advanced supplementary textbooks. These sources cover
nearly the full spectrum of high-school and competition-
level solid geometry categories, encompassing positional
relationships, angles, distances, area and volume computa-
tion, as well as combinatorial counting, dynamic scenarios,
and folding/unfolding problems (see Table 2).

3.2. Data Annotation Pipeline
We design a semi-automatic seed-question annotation
pipeline that aims to minimize manual labeling costs while
ensuring the correctness and availability of the generated
programs. Compared with a fully manual annotation pro-
cess, this approach substantially reduces human effort. At
the same time, in contrast to a fully automatic procedure, it
preserves accuracy and reliability in handling complex solid
geometry questions. As shown in Figure 1, our data anno-
tation process is divided into the following components:
1. Expert-Guided Parametrization and Visualization:

Here we follows a human-in-the-loop strategy, where
human experts collaborate with large models to create
a JSON annotation and a MATLAB program for each
source question:
• JSON-Based Question Parametrization: For each col-

lected source question, mathematics experts parame-
terize the question statement by converting fixed val-
ues into variable parameters (e.g., endpoint labels, side
lengths, areas, volumes, ratios) using f-string syntax,
while ensuring correctness and availability. Corre-
sponding answer is also expressed in terms of these
variable parameters. An example of parameterized
variables is highlighted in red in Fig. 1. Additional
metadata (e.g., category and difficulty level) is also in-
cluded and stored in JSON format.
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Figure 1. Overview of the data annotation pipeline and the application of seed questions. Annotation: 1) Expert-Guided Parametrization
and Visualization: Each source question is first parameterized into a JSON annotation and paired with a MATLAB visualization program.
2) Automated Python Program Synthesis: The pipeline then synthesizes parameterized Python programs that generate textual descriptions
and MATLAB invoke commands. 3) Automated MATLAB Program Synthesis: Correspondingly, the pipeline then synthesizes the param-
eterized version of MATLAB programs for figure and video rendering. 4) Expert Verification: Final human checks ensure the correctness
and usability of seed questions. Application: By inputting a random seed, each seed question is instantiated into a question instance.

• MATLAB-Based Geometry Visualization: MATLAB
experts implement programs that render each solid ge-
ometry image and video for each source question.

2. Automated Python Program Synthesis:
• Answer Function Generation: With the assistance of

the large language model, parametrized answers in
JSON are converted into Python functions that dynam-
ically compute results.

• Parameterized Program Construction: A rule-based
script automatically assembles parameterized Python
programs from the parametrized questions and answer
functions. By inputting a random seed, the parameter-
ized Python program randomizes both the MATLAB
camera parameters (i.e., azimuth and elevation) and
variable parameters in the parameterized question, and
finally outputs a JSON entry of the instantiated ques-
tion along with a MATLAB invoke command.

3. Automated MATLAB Program Synthesis: Each
MATLAB visualization program is automatically con-
verted into a parameterized version by a rule-based
script, aligned with the annotated JSON specification.
These programs can be directly invoked by the MAT-
LAB commands generated in the previous step, enabling
dynamic rendering of figures and videos consistent with
the instantiated question parameters.

4. Expert Verification: Final human checks ensure cor-
rectness, consistency, and usability of seed questions.

Overall, each seed question is associated with a param-
eterized Python program for generating the textual descrip-

tion and a parameterized MATLAB program for rendering
the corresponding figures and videos. By inputting a ran-
dom seed, each seed question can be instantiated into a con-
crete question instance.

3.3. Statistics

Table 2 summarizes the detailed statistics of the DynaSolid-
Geo dataset. In total, the benchmark contains 503 cu-
rated seed questions, all newly constructed for this work.
The questions span a diverse set of solid geometry prob-
lem categories, including Positional relationship determina-
tion (PD, 11.7%), Angle calculation (AN, 20.5%), Length
and distance calculation (LC, 13.1%), Area calculation
(AR, 11.3%), Volume calculation (VC, 10.3%), Counting
problems (CP, 7.0%), Dynamic or moving-point problems
(DM, 13.1%), and Folding and unfolding problems (FP,
12.9%). The distribution across difficulty levels is reason-
ably balanced, with 27.2% easy, 57.7% medium, and 15.1%
hard questions. Regarding question types, previous bench-
marks (e.g., DynaMath[47], SolidGeo [33], GeoSense[38],
MathVerse[43]) generally include multiple-choice ques-
tions. Such options inevitably provide strong hints to the
models, thereby reducing the difficulty and making it diffi-
cult to assess their reasoning ability accurately. In contrast,
we rewrite the multiple-choice and proof questions from the
source data into fill-in-the-blank formats in our work. As
a result, DynaSolidGeo consists of 88.3% numerical ques-
tions and 11.7% free-form questions, posing greater chal-
lenges to the reasoning ability of VLMs.
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Figure 2 shows the distribution of the number of vari-
able parameters contained in the seed questions of Dyna-
SolidGeo. The variable parameters include camera param-
eters (i.e., azimuth and elevation), endpoint labels, side
lengths, areas, volumes, ratios, and so on. As illustrated,
the seed questions exhibit substantial variability, highlight-
ing the richness and flexibility of our benchmark design.

Statistic Number
Total seed questions 503
- Newly curated questions 503 (100.0%)

Categories
- Positional relationship determination (PD) 59 (11.7%)
- Angle calculation (AN) 103 (20.5%)
- Length and distance calculation (LC) 66 (13.1%)
- Area calculation (AR) 57 (11.3%)
- Volume calculation (VC) 52 (10.3%)
- Counting problems (CP) 35 (7.0%)
- Dynamic or moving-point problems (DM) 66 (13.1%)
- Folding and unfolding problems (FP) 65 (12.9%)

Levels
- Easy 137 (27.2%)
- Medium 290 (57.7%)
- Hard 76 (15.1%)

Question types
- Numerical questions 444 (88.3%)
- Free-form questions 59 (11.7%)

Table 2. Statistics of DynaSolidGeo
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Figure 2. Distribution of variable parameters per seed question.

3.4. Evaluation Metrics
Unlike most existing studies that only assess the correctness
of final answers, we additionally introduce process evalua-
tion to holistically assess the model’s genuine spatial rea-
soning capacity. DynaSolidGeo consists of N = 503 seed
questions, from which we instantiate K batches of question
instances by sampling with different random seeds. Build-
ing on these instances, we design the following evaluation
metrics to systematically evaluate model performance.

3.4.1. Answer Accuracy
We use the Answer Accuracy (AA) to measure the correct-
ness of the model’s answers, i.e., the proportion of final an-
swers that are correct on average:

AA =
1

K

K∑
k=1

1

N

N∑
i=1

I[Ansk,i = GTk,i], (1)

where Ansk,i and GTk,i denote the rule-extracted answer
and the corresponding ground truth of the i-th question in
the k-th batch, respectively.

3.4.2. Process Score
To more accurately assess the quality of the model’s reason-
ing process, we annotate not only parameterized question
statements and answers, but also parameterized reference
reasoning processes. Each reasoning process is evaluated
using LLM as a judge according to the following criteria:
• Logical Alignment: The reasoning presents a coherent

derivation whose steps consistently lead to the stated re-
sult, with matching variables/units and without any unjus-
tified conclusion jumps.

• No Extraneous Information: The reasoning does not rely
on unseen quantities or unsupported facts as essential
premises (standard geometric axioms and theorems are
allowed).

• Use of Key Dependencies: The reasoning explicitly in-
vokes the key geometric relations specified in the problem
(e.g., parallelism, similarity, perpendicularity, collinear-
ity, ratios, or angle constraints), rather than skipping these
conditions and merely reporting the final result.

Based on these criteria, we introduce the process evaluation
metric, termed the Process Score (PS):

PS =
1

K

K∑
k=1

1

N

N∑
i=1

Sk,i,

where


0, if Ansk,i ̸= GTk,i;

0.75 ≤ Sk,i ≤ 1, if all above criteria are met;
0 < Sk,i < 0.75, otherwise.

(2)
In Equation 2, Sk,i denotes the process score of the i-th
question in the k-th batch scored by the judge model. A
higher PS corresponds to a reasoning process that is more
accurate, coherent, and of higher quality.

3.4.3. Process-Qualified Accuracy
Although some questions are answered correctly, the rea-
soning process behind them may not be logically accurate,
coherent, or supportive of the final correct answer. As a re-
sult, such “hallucination” cases inflate the evaluation of the
model’s spatial mathematical reasoning ability. To address
this, we propose a new composite metric, Process-Qualified
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Accuracy (PA), which combines Answer Accuracy and Pro-
cess Score to more accurately measure the model’s true spa-
tial mathematical reasoning capability:

PA =
1

K

K∑
k=1

1

N

N∑
i=1

I[Ansk,i = GTk,i & Sk,i ≥ 0.75].

(3)
We believe that a model can only truly possess the ability to
solve a problem when its reasoning process is logically ac-
curate, coherent, and supports the final answer, rather than
merely relying on the correctness of the final answer alone.

4. Experiment
DynaSolidGeo supports the random generation of two vi-
sual versions: a randomized-view image and a 360-degree
rotation video, for each question instance. Since existing
geometry problem-solving tasks focus exclusively on the
text-image modality, here we also evaluate models under
the same text-image setting.

4.1. Experimental Setup
Evaluation Models. We evaluate a range of the latest, pop-
ular, and state-of-the-art (SOTA) closed-source and open-
source MLLMs. The closed-source models include GPT-
5-Nano [27], GPT-5 [27], Gemini-2.5-Flash [11], Gemini-
2.5-Pro [11], and Claude-Sonnet-4.5 [5]. The open-source
models include LLaVA-OneVision-1.5 family (4B, 8B) [4],
GLM-4.5V [17], GLM-4.1V-9B-Thinking [17], Llama-3.2-
90B-Vision-Instruct [1], Llama-4-Maverick-17B-Instruct
[2], InternVL3-78B [46], InternVL3.5-8B [37], DeepSeek-
VL2 [36], and the Qwen3-VL family [30].

Implementation Details. We sample K = 3 batches
of question instances by setting the random seed to 0,
1, and 2, respectively, resulting in a total of 1,509 text-
image question instances. For answer evaluation, we al-
low a 1% relative error tolerance. For process evalua-
tion, we employ Qwen3-14B [39] as the judge model. For
the evaluated models, we deploy small-scale models, in-
cluding the LLaVA-OneVision-1.5 family, GLM-4.1V-9B-
Thinking, InternVL3.5-8B, and the Qwen3-VL family (4B,
30B), on NVIDIA A800 GPUs for evaluation. DeepSeek-
VL2 is evaluated via the SiliconFlow API1, while all re-
maining models are accessed through the OpenRouter API2

for evaluation.

4.2. Experimental Results
Overall Results on Evaluation Metrics. Table 3 presents
the performance of the models in Section 4.1 on the Answer
Accuracy (AA), Process Score (PS), and Process-Qualified

1https://www.siliconflow.com/
2https://openrouter.ai/

Accuracy (PA) metrics. For the GPT-5 family, LLaVA-
OneVision-1.5 family, and GLM-4.5V, the PS and PA met-
rics are not reported, as these models either do not disclose
their reasoning traces by API or inherently do not produce
explicit reasoning processes. Among the closed-source
models, GPT-5 achieves the highest overall AA score of
70.8%, outperforming all other models. Among the open-
source models, Qwen3-VL-30B-A3B-Thinking attains the
highest AA score of 65.6%, surpassing most of the closed-
source models. Among the models with available reasoning
traces, Qwen3-VL-30B-A3B-Thinking achieves the highest
PS and PA scores, both at 65.4%.

Performance Differences across Categories from the
Perspective of Spatial Intelligence. As shown in Table
3, the best-performing models perform well in Area cal-
culation (AR), Volume calculation (VC), and Dynamic or
moving-point problems (DM). However, all models strug-
gle with Counting problems (CP), and a significant per-
formance gap can be observed between open-source and
closed-source models in this category. This discrepancy can
be explained through the lens of spatial intelligence theory
[14]. Tasks such as AR, VC, and DM mainly rely on lower
or mid-level spatial perception, spatial relation, and spa-
tial orientation, where visual cues are explicit and reason-
ing can be simplified into formula- or rule-based deduction,
rather than fine-grained 3D structural reasoning. This aligns
well with the representational strengths of current MLLMs,
which operate on visual encodings and symbolic reasoning.
In contrast, Counting Problems (CP) require higher-order
mental rotation and spatial visualization, requiring 3D re-
construction, occlusion reasoning, and mental manipulation
of hidden or rotated objects. This explains why models per-
form relatively well on AR, VC, and DM tasks but fail con-
sistently on CP tasks.

Metric Degradation under Process Evaluation. As
shown in Table 3, after introducing process evaluation, all
models exhibit varying degrees of decline in both PS and
PA metrics compared to AA. Among them, Gemini-2.5-Pro
shows the largest drop, with PA decreasing by 9.4% relative
to AA, followed by Llama-3.2-90B-Vision-Instruct, whose
PA drops by 6%. This suggests that these models, while ca-
pable of producing correct answers, often rely on reasoning
processes that are less coherent or causally aligned with the
final answers. Furthermore, the decline in PA relative to AA
is generally smaller for thinking models than for instruct
models. For example, GLM-4.1V-9B-Thinking shows
only a 1.5% drop, and Qwen3-VL-8B-Thinking decreases
by merely 0.1%, whereas both Llama-3.2-90B-Vision-
Instruct and Llama-4-Maverick-17B-Instruct experience
drops exceeding 5%. Even within the Qwen3-VL fam-
ily, Qwen3-VL-8B-Thinking and Qwen3-VL-30B-A3B-
Thinking exhibit smaller declines compared to Qwen3-VL-
8B-Instruct, Qwen3-VL-30B-A3B-Instruct, and Qwen3-
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Model
PD AN LC AR VC CP DM FP ALL

AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA AA / PS / PA

Closed-sourced MLLMs

GPT-5-Nano 39.5 / - / - 54.0 / - / - 56.1 / - / - 71.9 / - / - 71.2 / - / - 5.7 / - / - 53.0 / - / - 42.6 / - / - 51.4 / - / -
GPT-5 74.6 / - / - 66.0 / - / - 76.8 / - / - 83.6 / - / - 85.3 / - / - 20.0 / - / - 78.8 / - / - 65.1 / - / - 70.8 / - / -
Gemini-2.5-Flash 44.1 / 42.9 / 42.9 48.2 / 45.9 / 45.6 60.1 / 57.8 / 58.1 63.7 / 61.0 / 61.4 55.8 / 53.7 / 53.9 16.2 / 16.2 / 16.2 61.6 / 59.8 / 60.1 34.9 / 33.6 / 33.9 49.6 / 47.8 / 47.9
Gemini-2.5-Pro 71.8 / 61.2 / 54.8 52.4 / 43.6 / 39.2 69.7 / 64.6 / 61.6 71.3 / 67.5 / 66.1 76.9 / 69.7 / 65.4 30.5 / 30.5 / 30.5 63.1 / 60.0 / 57.6 56.4 / 50.4 / 47.7 62.0 / 55.9 / 52.6
Claude-Sonnet-4.5 43.5 / 34.7 / 32.2 26.5 / 25.0 / 24.0 37.9 / 34.5 / 32.8 50.3 / 48.7 / 49.1 53.8 / 49.8 / 47.4 6.7 / 6.0 / 5.7 26.3 / 24.2 / 23.2 15.4 / 13.5 / 12.8 32.7 / 29.7 / 28.6

Open-sourced VLMs

LLaVA-OneVision-1.5-4B-Instruct 11.9 / - / - 4.5 / - / - 7.6 / - / - 15.8 / - / - 10.3 / - / - 1.9 / - / - 4.0 / - / - 0.0 / - / - 6.8 / - / -
LLaVA-OneVision-1.5-8B-Instruct 17.5 / - / - 1.9 / - / - 7.6 / - / - 2.9 / - / - 2.6 / - / - 1.0 / - / - 5.6 / - / - 3.1 / - / - 5.2 / - / -
GLM-4.5V 49.7 / - / - 31.4 / - / - 42.9 / - / - 57.3 / - / - 50.6 / - / - 7.6 / - / - 48.0 / - / - 12.8 / - / - 38.1 / - / -
GLM-4.1V-9B-Thinking 29.9 / 27.3 / 26.6 22.7 / 21.7 / 21.7 33.3 / 30.7 / 31.3 44.4 / 42.7 / 43.3 41.0 / 37.8 / 39.1 2.9 / 2.9 / 2.9 26.8 / 25.5 / 25.3 5.6 / 4.6 / 4.1 26.2 / 24.6 / 24.7
Llama-3.2-90B-Vision-Instruct 35.6 / 27.1 / 23.2 14.2 / 10.1 / 8.4 25.8 / 22.6 / 21.2 49.7 / 45.6 / 43.9 39.7 / 34.0 / 31.4 1.9 / 1.2 / 1.0 9.1 / 6.7 / 5.6 8.2 / 5.0 / 3.1 22.6 / 18.5 / 16.6
Llama-4-Maverick-17B-Instruct 36.7 / 27.1 / 21.5 13.9 / 10.4 / 8.4 24.7 / 21.8 / 20.7 46.8 / 44.3 / 43.3 38.5 / 31.7 / 30.1 4.8 / 3.3 / 2.9 8.1 / 5.8 / 4.6 8.2 / 5.8 / 4.1 22.1 / 18.2 / 16.3
InternVL3-78B 32.8 / 21.5 / 16.4 3.9 / 3.2 / 2.6 16.7 / 14.3 / 14.1 31.0 / 25.9 / 24.6 22.4 / 18.1 / 18.0 2.9 / 2.4 / 1.9 8.6 / 5.2 / 3.0 4.6 / 2.7 / 1.0 14.6 / 11.0 / 9.6
InternVL3.5-8B 24.3 / 21.6 / 19.8 36.6 / 35.8 / 35.6 33.8 / 33.3 / 33.3 43.9 / 43.0 / 42.1 40.4 / 38.3 / 37.8 7.6 / 6.7 / 6.7 44.4 / 44.1 / 43.9 21.5 / 20.9 / 20.5 33.1 / 32.0 / 31.5
DeepSeek-VL2 10.7 / 5.5 / 1.7 1.0 / 1.0 / 0.3 6.6 / 3.8 / 1.5 12.9 / 9.9 / 7.6 7.1 / 5.3 / 5.1 1.9 / 1.0 / 0.0 2.5 / 1.1 / 0.0 2.6 / 1.0 / 0.0 5.3 / 3.3 / 1.9
Qwen3-VL-8B-Instruct 39.5 / 38.1 / 39.0 48.5 / 47.6 / 48.2 40.4 / 39.8 / 40.4 55.0 / 53.1 / 54.4 50.0 / 49.5 / 50.0 1.9 / 1.7 / 1.9 49.5 / 48.7 / 48.5 30.8 / 29.0 / 29.7 41.9 / 40.8 / 41.4
Qwen3-VL-8B-Thinking 63.3 / 63.3 / 63.3 58.6 / 58.6 / 58.6 59.1 / 58.8 / 59.1 67.8 / 67.7 / 67.8 62.8 / 62.8 / 62.8 9.5 / 9.0 / 8.6 71.2 / 71.1 / 71.2 52.8 / 52.6 / 52.8 58.2 / 58.1 / 58.1
Qwen3-VL-30B-A3B-Instruct 37.3 / 34.2 / 35.0 56.3 / 54.9 / 55.0 54.0 / 52.8 / 54.0 63.2 / 61.7 / 62.0 60.3 / 59.6 / 60.3 6.7 / 6.7 / 6.7 63.6 / 62.6 / 63.1 42.1 / 41.5 / 41.5 50.6 / 49.4 / 49.8
Qwen3-VL-30B-A3B-Thinking 68.4 / 67.8 / 67.8 64.4 / 64.4 / 64.4 67.2 / 67.2 / 67.2 75.4 / 75.1 / 74.9 76.3 / 75.5 / 75.6 11.4 / 11.4 / 11.4 78.3 / 78.2 / 78.3 62.6 / 62.4 / 62.6 65.6 / 65.4 / 65.4
Qwen3-VL-235B-A22B-Instruct 72.3 / 69.9 / 71.8 63.4 / 62.4 / 62.5 65.2 / 64.7 / 65.2 76.0 / 75.1 / 75.4 71.8 / 70.9 / 71.2 6.7 / 6.7 / 6.7 69.7 / 69.2 / 69.2 57.4 / 56.9 / 57.4 63.1 / 62.2 / 62.6

Table 3. Comparison of model performance on the Answer Accuracy (AA), Process Score (PS), and Process-Qualified Accuracy (PA)
metrics. For the GPT-5 family, LLaVA-OneVision-1.5 family, and GLM-4.5V, the PS and PA metrics are not reported, as these models
either do not disclose their reasoning traces by API or inherently do not produce explicit reasoning processes.

VL-235B-A22B-Instruct. These observations suggest that
thinking models generally produce reasoning processes that
are more coherent, logically sound, and causally consistent
with their final answers than those of instruct models. In ad-
dition, only a few stronger models, such as those from the
Gemini and Qwen3-VL family, achieve identical AA, PS,
and PA on Counting problems (CP), whereas others show
clear metric gaps on different task types. This indicates that
the CP task requires higher-order spatial intelligence and
more rigorous symbolic reasoning. Consequently, making
correct answers less susceptible to hallucination or logical
inconsistency.

Data Contamination and Memorization Phe-
nomenon. To probe potential data contamination and
memorization effects of VLMs on static datasets, we
further evaluate their Answer Accuracy (AA) on the static
source questions, as shown in Figure 3. Compared with the
static source-question dataset, all models show a notable
performance drop on DynaSolidGeo, with Claude-Sonnet-
4.5 (-20.4%) and InternVL3.5-8B (-17.6%) declining the
most. This reveals that these VLMs may suffer from
varying degrees of data contamination on static datasets
and tend to rely on memorization-based patterns rather
than genuine reasoning processes when producing answers.
In contrast, DynaSolidGeo serves as a benchmark for as-
sessing the VLMs’ genuine ability in spatial mathematical
reasoning. Furthermore, thinking models show smaller
performance declines than instruct ones, suggesting that
RL promotes reasoning-oriented behavior, while SFT
encourages memorization of answers.

Model
Num. of Output Tokens Metrics

Correct / Incorrect / All AA / PS / PA

Closed-sourced MLLMs

GPT-5-Nano 8846.12 / 9739.68 / 9280.17 51.4 / - / -
GPT-5 7958.86 / 9900.60 / 8526.33 70.8 / - / -
Gemini-2.5-Flash 4865.65 / 25448.12 / 15231.90 49.6 / 47.8 / 47.9
Gemini-2.5-Pro 15054.69 / 18663.74 / 16425.13 62.0 / 55.9 / 52.6
Claude-Sonnet-4.5 987.64 / 1047.81 / 1028.15 32.7 / 29.7 / 28.6

Open-sourced VLMs

LLaVA-OneVision-1.5-4B-Instruct 712.62 / 842.79 / 833.90 6.8 / - / -
LLaVA-OneVision-1.5-8B-Instruct 262.11 / 150.33 / 156.19 5.2 / - / -
GLM-4.5V 4679.18 / 5287.26 / 5055.40 38.1 / - / -
GLM-4.1V-9B-Thinking 6599.09 / 7562.91 / 7309.98 26.2 / 24.6 / 24.7
Llama-3.2-90B-Vision-Instruct 756.23 / 821.67 / 806.88 22.6 / 18.5 / 16.6
Llama-4-Maverick-17B-Instruct 761.78 / 866.27 / 843.14 22.1 / 18.2 / 16.3
InternVL3-78B 562.24 / 599.96 / 594.46 14.6 / 11.0 / 9.6
InternVL3.5-8B 11336.19 / 15019.64 / 13801.59 33.1 / 32.0 / 31.5
DeepSeek-VL2 404.41 / 465.09 / 461.88 5.3 / 3.3 / 1.9
Qwen3-VL-8B-Instruct 7514.76 / 18246.12 / 13751.61 41.9 / 40.8 / 41.4
Qwen3-VL-8B-Thinking 13251.57 / 21482.31 / 16693.32 58.2 / 58.1 / 58.1
Qwen3-VL-30B-A3B-Instruct 10236.35 / 22068.35 / 16077.87 50.6 / 49.4 / 49.8
Qwen3-VL-30B-A3B-Thinking 10954.33 / 17192.55 / 13099.88 65.6 / 65.4 / 65.4
Qwen3-VL-235B-A22B-Instruct 6045.59 / 6945.21 / 6370.42 63.1 / 62.2 / 62.6

Table 4. Comparison of average output tokens for correct, incor-
rect, and overall responses with corresponding performance.

Model Inference Efficiency Analysis. Table 4 sum-
marizes, for each model, the average number of output
tokens in the cases of correct and incorrect answers, as
well as the overall average, together with the correspond-
ing performance metrics. Overall, the number of output
tokens is roughly positively correlated with model perfor-
mance—models with very poor accuracy consistently pro-
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Figure 3. Comparison of model performance on Answer Accuracy (AA) between DynaSolidGeo and source questions.

duce shorter outputs, which aligns with the principle of test-
time scaling. In addition, for almost all models (except
LLaVA-OneVision-1.5-8B-Instruct), the reasoning traces
for incorrect answers are noticeably longer than those for
correct ones. This is likely because, when a model encoun-
ters a problem it cannot solve or faces logical inconsisten-
cies during reasoning, it tends to repeatedly “rethink” its in-
termediate steps, resulting in unnecessarily prolonged rea-
soning chains.

Visual Perception:

397 (53%)

Logical Reasoning:

236 (33%)

Hallucination：6 (1%)

Calculation:

 57 (8%)

Visual Perception：
449 (86%)

Logical 

Reasoning: 44 (8%)

Calculation: 22 (4%)

Knowledge: 10 (2%)

Knowledge: 

37 (5%)

(a) Gemini-2.5-Pro (b) Qwen3-VL-30B-A3B-Thinking

Figure 4. Error Analysis.

4.3. Error Analysis
We conduct an error analysis on two representative models,
Gemini-2.5-Pro (closed source) and Qwen3-VL-30B-A3B-
Thinking (open source). Specifically, we categorize the er-
rors in Process-Qualified Accuracy (PA) into five types: Vi-
sual Perception Errors, Logical Reasoning Errors, Calcula-
tion Errors, Knowledge Errors, and Hallucination Errors, as
shown in Figure 4. Across the 1,509 sampled instances,
Gemini-2.5-Pro makes a total of 715 errors, Qwen3-VL-
30B-A3B-Thinking makes 525 errors. Among these er-
ror types, visual perception and logical reasoning errors
dominate, with visual perception errors accounting for the
largest proportion. This indicates that, although these ad-
vanced models have demonstrated strong symbolic reason-

ing capabilities, they still lack sufficient perceptual under-
standing in solid geometry tasks that require spatial intel-
ligence. Qwen3-VL-30B-A3B-Thinking exhibits 52 more
Visual Perception errors than Gemini-2.5-Pro, suggesting
that it is more prone to reasoning failures triggered by in-
accurate visual perception. This also explains why Qwen3-
VL-30B-A3B-Thinking performs significantly worse than
Gemini-2.5-Pro on Counting Problems (CP), which demand
higher levels of spatial intelligence. In addition, Qwen3-
VL-30B-A3B-Thinking makes fewer errors in other cate-
gories (including Logical Reasoning Errors), demonstrating
its stronger symbolic reasoning capability.

5. Conclusion
In this work, we introduced DynaSolidGeo, the first dy-
namic benchmark for evaluating the genuine spatial mathe-
matical reasoning capabilities of VLMs in solid geometry.
Through a semi-automatic, expert-guided pipeline, Dyna-
SolidGeo enables unbounded generation of diverse multi-
modal instances, effectively mitigating contamination and
memorization issues found in static datasets. By integrat-
ing both answer- and process-level evaluation, we provide
a more faithful assessment of reasoning validity and spatial
perception. Comprehensive experiments uncover persistent
limitations in high-level spatial intelligence and reveal sub-
stantial performance degradation under dynamic evaluation.
We expect DynaSolidGeo to provide a reliable foundation
for advancing process-grounded, contamination-resistant
multimodal reasoning benchmarks and inspire future re-
search toward robust spatial reasoning in VLMs.

Future Work
We will update our Appendix in the next version.
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